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1. INTRODUCTION

The instability and eventual breakup of shaped-charge jets have been previously observed
in many experimental studies. These jets are commonly formed from the collapse of thin

metallic conical liners, when exposed to the detonation of a high explosive. After formation,

shaped-charge jets stretch with a reasonably uniform velocity gradient, when measured along

their length. Apparently, this stretching motion is unstable, because after a specified time

period (the breakup time) the jet will neck down in places along its surface and break into

many fragments.

Interest in the breakup phenomenon observed in shaped-charge jets has prompted a nuni

ber of theoretical investigations into the stability of elongating jets. Recent two-dimensional

calculations by Curtis (1987), Pack (1988), and Romero (1989), in which the jet was as-

sumed to be perfectly plastic and obey the Von-Mises yield criterion, have been successful in

reproducing some of the behavior observed in experiments. These studies also accounted for

inertial effects, since they are significant for shaped-charged jets, where strain rates as high
as 105 sec- 1 are commonly observed. The results indicated that uniformly elongating plastic

jets are almost always unstable when a perturbation is introduced. Romero concluded that

tlc most instable disturbances for jets with large strain rates have initial wavelengths that

ar sn the order of the jet diameter. This prediction is consistent with the experimental ev-

idence for shaped-charge jets, where roughly equal-sized fragments have been observed after

the jet breakup has initiated. A later study by Littlefield and Powell (1990) which also in-

cluded electromagnetic effects, discussed in some detail the physical mechanisms responsible

for this breakup.

Recent attention has focused oil the development of methods for enhancement of the

instabilities in shaped-charge jets, in order to reduce the breakup time. One proposed

method involves the introduction of an axial electric current in the jet. By passing an axial

current through the jet, it is hoped that instabilities similar to those found in plasma columns

(Kruskal and Schwartzschild 1954; Tayler 1956) might be activated. Recent experiments

have demonstrated that electrical currents may have an effect on the breakup time of jets

Moreover, the study by Littlefield and Powell, in which a linear perturbation analysis was
employed to examine the tability of infinitely conducting jets, indicated that electrical

currents may shorten the breakup time of the jet. Further study is needed, however, before

any definite conclusions can be drawn. The applicability of the analysis by Littlefield and

Powell, for example, is limited due to the assumption of infinite conductivity. A typical

copper shaped-charge jet (Powell and Littlefield 1990) has a conductivity of about 10' (ohm-

m) - '. The magnetic Reynolds number associated with the jet, therefore, is about ten, whidh



is not large enough to justify the infinite conductivity assumption.

The present analysis extends the previous work by Littlefield and Powell to include jets of
finite conductivity. As in previous analyses, the jet is assumed to be infinitely long, uniformly

elongating in the axial direction, and perfectly plastic. Heat conduction, dissipation, and

Joule heating effects are also neglected, which permits the omission of the conservation of

thermal energy and simplifies the analysis. In practice, this assumption restricts the electrical

current to levels that are not laige enough to cause large scale changes in the thermal energy.

Two different base solutions for the velocity, pressure and magnetic field distributions are

determined for the jet, as well as the surrounding vacuum, under axisymmetric conditions.

In the first solution, an axial electric current, assumed to be initially on the surface, is

permitted to diffuse into the jet interior over time. The second solution, on the other hand,

assumes an initial body current, so that the axial current density is constant throughout

the cross section. While the first solution is characteristic of the actual current distribution

in jets, the second solution provides useful insights about the stability and facilitates the

discussion. Small axisymmetric disturbances of these base solutions are then considered, and

the equations governing their time evolution are derived using linear perturbation theoi,.

Solutions to these equations are used to evaluate the stability of the jet.

The arrangement of this paper is as follows. In Sec. 2, the physical model is described

and the governing equations in the jet, as well as the vacuum, are presented. Base solution-,

to these equations are given in Sec. 3 for the different initial current distributions. Th(

first-order equations corresponding to these base solutions are derived in Sec. 4 using lineal

perturbation theory. In Sec. 5, these equations are solved and the stability characteristics of

the jet are discussed. Finally, Sec. 6, contains some general conclusions and observations.

2. MATHEMATICAL MODEL

Consider an axisymmetric shaped-charge jet as depicted in Fig. 1. The jet is assumed k,,
be uniformly elongating and perfectly plastic. A constant axial electric current I is pass( d

through the jet initially and permitted to diffuse with time. The radius at any point alon r

the jet boundary is denoted by rb(z, t), and the outward unit normal vector at this point.

by n. The governing equations of motion in the jet, which may be found elsewhere (Poweli

and Littlefield 1990; Littlefield and Powell 1990) are repeated here for convenience. Let the

velocity be given by V, the pressure by p, the deviatoric stress tensor by 3, the current

density by J, the electric field by E, the magnetic-induction field by B, the density by p, ti

conductivity by o, and the magnetic permeability by p0. Then the governing equations are

given by
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V*V =0, (1)

p(' +* 7,'j) = -Vp + a+ J xB, (2)

E +VxB = J/, (3)

V*B =0, (4)

V x B = y,(.5)

and

VxE=-a. (6)

at

Vacuum

n z

Figure 1. Model for jet stability calculations.

Equations (1) and (2) are the incompressible continuity and momentum equations, re-

spectively; Eq. (3) is Ohm's Law, and Eqs. (4) - (6) are Maxwel1 s equations.
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The present analysis assumes the idealized motion of the jet, as well as disturbances to

this motion, are axisymmetric. Furthermore, Jo and Eq are assumed zero.* Consequently,

the component forms of the governing equations may be simplified. The continuity equation,

tor example, reduces to

Ovz

where v, and v. are the radial and axial components of the velocity, respectively. Amp~re's

law, given in Eq. (5), yields the two scalar relations

OBO - /1 (8)
Oz

and

-(rB) =uo,
r Or

where Jr and J, are the radial and axial components of the current density, respectively,

and B is the azimuthal component of the magnetic field. With use of Eqs. (8) and (9), the

component forms of the momentum equation become

( OVr Or v iVr' Op Obrr S,, - So Osrz 1B 13_
P ( ot + V7 -- T+V- P + - -±- + +  - S + -r o (rB) (10)+t O . Or / -Or Or r Oz r poOr

and

+V+VrZ . V. L+ S Srz +OSz B OB
O t Or -z z Or+ r ±Oz oOZ (11,

where s,, denotes the corresponding component of !a. Ohm's Law yields the two componet

equations

a(Er - vzB) = Jr (12)

and
*The governing equations allow for nonzero Jo and E0 , but it may be shown these quantities tend to zero as time progresses

anyway. Consequently, the contribution of nonzero J9 and Eq to the stability characteristics of the jet is believed to be small.
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a(E + vrB) = Jz, (13)

where E, and E, are the radial and axial components of the electric field, respectively. Eq. (4)

yields information uncoupled from the present analysis, but (6) yields the single equation

OM, OE OB

Oz Or Oz "

The scalar forms of Eqs. (1) - (6), given in Eqs. (7) - (14), still have more unknowi's

than equations. A constitutive relationship must also be specified, relating the deviatoric

stress to material properties and other variables in the jet. In the present analysis, the jet

is assumed perfectly plastic. This requires the deviatoric stress to be proportional to thl

strain rate, which under axisymmetric conditions yields

Sr= 2A-a 7 , (15)
Or

soo =2A-- (16)
r

Ovz
s = 2A-- (17)

Oz

and

Sz=A(Ov-' avz (18)

Oz Or]

where the coefficient of proportionality A is formulated to satisfy the Von Mises yield crite-

rion, given by

(s 9 - SOO)' + (SOO - s2 z)' + (s~z - sr)r + 6s , = 212, (19)

and Y is the constant yield strength. Solving for A from Eq. (19) with use of Eqs. (15) - (IF')

gives

A=-_ 2,(r +2 +2(o2) (--+ o)] (20)
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Application of these constitutive relations to the momentum equations given in Eqs. (10)

and (11) yields

P av+ Ov' + V. +O A ( a2Vr l OVr v" + 2vr.

akt + v r +  z =-o-r +  r rk 0 a+  r2 +  Z2

+ 2 V '. O , av- + A a ) I B o (21)

and

aOr, o%, z )V Op + Aa27., + I aV, + 02Vz

P , -+ VT + -LaOt Or OZ az ar2 rdjr aZ2

2OA,, o (0 ov , BOB
o-z o-Z + F oz r oo' (22)

with A given by Eq. (20). It is also convenient to combine Eqs.(8) - (9) and (12) - (14) into

a single equation for B, which yields

B OB B OB 1 IO2B 1OB B 0 2B(
+VB B + r - 2 +. (23)-- + ' Or + z.oZ ,, O 2 r1r r

Eqs. (7) and (20) - (23) represent five equations for the five scalar unknowns (v,, vz, p, A,

and B) which govern the motion in the interior of the jet.

The relevant conservation equations also must be satisfied in the vacuum surrounding
the jet. In the vacuum, Eq. (1) is meaningless and Eq. (2) is identically satisfied since 1,.
p, , and J are zero. Eqs. (3) - (6) may be simplified by setting J = a = 0 and requiring

axisymmetry. The resulting equation for By, the 0 component of B in the vacuum, is given

by

O2Bv I OB" B OB(
0r2 + + r r. (24)r Or_ r- - z

The remaining variables in the vacuum are either zero or may be determined by back sub-

stitution.

The application of these equations implies that certain conditions must be satisfied at

the interface between the vacuum and the jet. In particular, mass and momentum must bc

6



conserved and Maxwell's equations must be satisfied across the interface. These conditions

may be derived systematically (Kruskal and Schwartzschild 1954) by integrating the rele-

vant equations across the boundary, of presumed thickness b, in a direction normal to the

boundary, then taking the limit as b6-0. Let dl be an element of arc length normal to the

surface. Then, the pertinent equations are multiplied through by dl = nrdr + n.dz, where

nr and n,, are the r and z components of n, and integrated across the boundary. Integration

of the quantity 2F, for example, produces the term n,. < F >, where the brackets denote

the change in the quantity across the boundary. Similarly, the term 2F produces n. < F >.

Finally, the main contribution of the partial time derivative of a function F arises from the

motion of the boundary, so that integration of the term !-' produces -v • n < F >, where

v is the velocity of the interface.

Application of the integration procedure to Eq. (1) conserves mass and gives

Orb + L - = Vr (25)

Ot Or

when evaluated at r = rb. The integration of Eq. (2) conserves momentum at the interface

and yields

np- 2nA - n2 A O + O - (2)

and

n? .2( O,- OVr O V, 71 2r[(v 2 -B21 =0(7nzp 2nzA -n, A --z Or --- (

at r = rb, where Eqs. (15) - (18) have been substituted for the components of !. Here the

radial and axial components of the unit normal vector n, given by nr and n,, arc easily

defined in terms of the equation of the surface, r = rb. This gives

V(r - rb) _ r - 8
T()

n rb= - 1~(2 )IV(r-rb)1 [1 + o 2 z

where e, and e, are the unit normal vectors in the r and z directions, respectively. Similarly,

the integrations of Eqs. (3), (4), and (6) may be performed, but yield either an identity

or information which is not required for the analysis. The integration of Eq. (5), however,

requires B to be continuous at the interface, or

7



B'- B = 0 (29)

at r = rb. Eqs. (25) - (27) and (29), together with the requirement that v,, vZ, p and

B all remain finite at the centerline, define a complete set of boundary conditions. If the

initial conditions are specified, these boundary conditions are sufficient to solve the governing

equations in the jet and the vacuum.

3. BASE SOLUTIONS

The unperturbed motion of the jet is characterized by a uniform velocity gradient in the

axial direction. This velocity gradient determines both the axial and radial local velocities.

as well as the position of the interface at any given time. In addition, a constant axial electric

current I is passed through the jet and permitted to diffuse with time. This idealized current

distribution induces azimuthal magnetic fields both in the jet and in the surrounding vacuum,
which interact to create Lorentz forces. These electromagnetic forces, as well as inertial forces

which arise from the velocity gradients, affect the idealized stress distribution in the jet.

The unperturbed velocities and radius of the jet have been presented many times (Powell

and Littlefield 1990; Curtis 1987; Pack 1988; Rornero 1989; Littlefield and Powell 1990), but

will be repeated here for convenience. The subscript zero will be used to denote these

idealized quantities. The axial and radial velocities are given by

Z 7iZ (30)

and

VrO (31)

where q7 is the initial strain rate and r = 1 + lit. This velocity distribution requires the

unperturbed value of A to be A0 = YT/3l7. The radius at the boundary is given by

rbo = a (32)

where a is the initial radius of the jet. The magnetic field and stress profiles depend on these

velocities, and on the current distribution in the jet. The magnetic-induction field in tl~e

vacuum, for example, is required by Ampere's Law to be

8



Bo =1101 (3
_ o_ I(33)

2irr'

which also satisfies Eq. (24). The zero-order pressure distribution in the jet is determined
from the integration of Eq. (21) which, after substitution of the velocities given in Eqs. (30)
and (31) and use of the boundary condition in Eq. (26), yields

3pr7 a2 )Y 1 B 0 r)du,

po- 2+ra 2-T ') -+ j B y-[uBo(u, (34)

where Bo is the zero-order magnetic field in the jet.

This magnetic field must satisfy Eq. (23), which may be simplified to yield

O Bo 77r O Bo +T Bo I (a02 B o  I10Bo Bo
at 2T Or 2-r- a-o O--r2 + r Or r . (35)

The advection term in Eq. (35) may be completely eliminated by a coordinate transform -

tion which deforms in accordance with the stretching motion of the jet, together with a
transformation for B0 . A suitable transformation may be defined as

zT r 1/ 2 12B

z=-, - , r= +i+q, hor 2 B (36)
aT a

which, when substituted into Eq. (35), yields

aB r (O2Bho 1 0B o o
Or - ? k O +  _ o O , (37)

where R = arpo0,a 2 is the magnetic Reynolds number. The boundary condition in Eq. (29)
requires Bo to be continuous at the interface, which gives

i = ,Lo1T (38)27ra (8

at f = 1. The specific solution for h 0 depends on the initial condition chosen. In the present
analysis, two different cases are considered for this condition: an initial surface current and
an initial body current.

9



3.1 Initial Surface Current. If the current is initially located on the surface of the

jet, the appropriate initial condition is B0 = 0 at r = 1. Moreover, since the boundary

condition given in Eq. (38) is time dependent, Duhamel's theorem (Carslaw and Jaeger

1959) must be employed to find a solution to Eq. (37). Application of the theorem requires

the solution to an auxiliary problem for B,. The governing differential equation for B is

identical to the equation for B0 , but the boundary condition is given by

- 2ir (39)

at f = 1, where ; is treated as a constant. The solution to this auxiliary problem is given by

00 9-TJ -fif ^"2
= if + '(' exp -- (r (40

i Yjjo(-Y,) [ 2R

where Jo and J, are Bessel functions, ha = 2ia, and -y. satisfies the transcendental equation

J,(y,) = 0. This solution is then used in Duhamel's integral to find a solution for Bo, which

gives bo 7) =- -
11

UOI0 -+~ 2J,(yji) w21.2 + I Dwr Wi 2 Dw)J'r (4])
2ira __ +o JJD~j

where w, is defined as wi= -tj/(2R) 1/2 , and D is Dawson's integral (Abramowitz and Stegun

1964). In Fig. 2, the dimensionless magnetic field 3o is plotted vs. f at several times for a

magnetic Reynolds number of ten, whereBo = 2- As is evident from the figure, the

current is initially concentrated at the surface, then diffuses to the interior of the jet as timc

progresses. Apparently, for this magnetic Reynolds number the current is almost completely

diffused when r = 2. Also, the magnetic field at the surface increases with time, due to

the decrease in the cross sectional area associated with the stretching motion of the jet.

Evidently, this increase in 6 0 always prevents the current from ever diffusing completely.

3.2 Initial Body Current. When the electrical current is completely diffused im-

tially, the appropriate initial condition on B,0 is

'= (42)

I0



1.50

= 1.25

1.25 -"r= 1.75 / .

X/7

0.75
b7.

0.50 -

0.25 / / ... "

. . . .._ _ _ _ _ _ _ _ _ _ _ _
0 -' : --'- --........---- --

-0.25 - I I I I

0 0.2 0.4 0.6 0.8 1

r

Figure 2. BY0 versus F at several times for R = 10, assuming an initial surface current.

at r = 1. Application of this condition to Eq. (37), using a solution procedure similar to the

initial surface current case presented above, gives

b POI "0)2J,-(-1...,a'(\

= 7ol +T 2JE(d J)[D(wj)_ e-J(,_r)D(wi)]) "  (43)27ra ~j=o },j wjjo-j

Fig. 3 shows Bo vs. F at several times for R = 10, where B0 = 2 Apparently, for

this magnetic Reynolds number the electric current remains almost completely diffused at

all times. The positive curvature in the profiles for B0 are indicative of only slight currei t

diffusion towards the centerline of the jet. The slight decrease in 3o at early times in the jet

interior is an advection effect associated with the stretching motion.

4. PERTURBATION EQUATIONS

To study the stability of the idealized stretching motion presented in Sec. 3, a small
disturbance is introduced to the flow and permitted to develop over time. The equations
which govern the time evolution of this disturbance are formulated using linear perturbation

theory, for which solutions are valid provided the overall magnitudes of the disturbances

remain small.

11
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r

Figure 3. B0 versus F at several times for R = 10, assuming an initial body current.

The development of the perturbation equations is accomplished through the substitution

of the variables

Vr = VrO + Vrl, VZ 
= VZO + Vzl,

A = Ao+A 1 , p=Po+P,,

B = Bo+B, Bu=B +B',

rb = rbo + rb6 , (44)

into the governing differential equations, where the subscript one denotes a first order quan-

tity. Keeping terms which are of zero- and first-order only, and recognizing the zero ord'r

solutions also satisfy the governing equations, the continuity equation gives

49V 7 1  Vrl ~z
IO-- + - +  V--' = o. (45,ir r Oz

Similarly, the scalar forms of the momentum equation yield

12



( OVrl 7Vrl _ r OVrl )z OVZ q _ +A. 02vrl
Ot 2r 2 r + - ) Or Z2

- BAB-+ I B -+ - 1B 11 (46)
Po Oar 9r r

and

( av2 1 +~~ TI- _7r av-i +z Ov-i _ ~ +p Ao a2vl + 1 aVzl a2V'p -t +- = +Ao +z2
r 2r r r z Oz r2  r Or - z2

Bo aOz '(47)

where substitution of the zero-order velocities given in Sec. 3 has been performed, and A,
has been eliminated using the relation

A1 = r Ovzl\()
, r z ,o. (48)

Eq. (48) represents the first order contributions to Eq. (20). The magnetic convection-

diffusion equation yields

a1+ i)B1  (OB _Bo) 71r OB1  tjzO Bi 1 (492B, 1OBi B, 0 2 Bi
t 2T +\Or r /_ - 2-r Or T Oz a o 5r2  r Or -o r2  +- z

(49)

It is advantageous to simplify Eqs. (45) - (49) further before solving them. The result of
a previous analysis (Romero 1989) has demonstrated a coordinate transformation which
deforms in accordance with the stretching motion of the jet, given by

z r 7 1/ 2

z=-, r - , r= l+ 7 t, (50)
aT" a

eliminates the explicit z dependence in the perturbation equations. This permits the ax-
ial dependence of the independent variables to be Fourier analyzed, which facilitates the
calculations. Furthermore, the number of independent parameters in the problem may 1'e
minimized if the perturbation equations are cast in dimensionless form. Let

13



v = 1a2exp(ik.), v, 1 = ria ,exp(iki),

A1  - Aexp(ik), pi = pq12a2kexp(ik),

(oI Je1
B, = 2 a Bexp(ik,), = 2ira

rbi = rbObexp(iki), (51)

where k is the axial wavenumber and i = i--. Then the perturbation equations for the

dimensionless velocity, pressure and magnetic field in the jet may be derived from Eqs. (45)

- (49), and are given by

Oi, r V ik
+ 732 0,(5

av,. VV 3/ _ B /bo 2
T 2 V r O _

T_ &_ + 1i, k f- ikAJ3oh, -(54)ar -&-2 + ik4+- \O r 73# + r

and

a,&1/2(OBO -bo >T((92 1 9hbB k 2 )
o-7r + - +  o2 2 + r r 7

Here the dimensionless parameters fQ and A are defined by

= 3p 2a2 ; A - 'uO2 (56)
y 472 p71 a4, 6

and R is the magnetic Reynolds number. Q and A physically represent the relative magni-

tudes of inertial to plastic forces, and electromagnetic to inertial forces, respectively; and R
is a ratio of magnetic convection to diffusion.

In the vacuum surrounding the jet, previous analysis (Littlefield and Powell 1990) has

demonstrated that the perturbed magnetic field, b", is identically zero. This result also

14



follows directly from Amp~re's Law, since the total current in the jet remains constant over

time.

The boundary conditions applicable at the interface between the jet and the vacuum must

also be specified, and may be derived from Eqs. (25) - (29). The first order contributions
to these conditions are evaluated, keeping in mind that the zero order contributions are

identically satisfied by the zero order solutions. Furthermore, the first order contribution of

the zero order solutions evaluated at the perturbed boundary must also be included. For

example, the first order contributions to the condition F = 0 would be determined as

F, + M rbl = 0, (51)

evaluated at r = rbo. Consequently, the boundary condition on B, which is derived from

Eq. (29), is given by

B + (, / 2 + 19k) b0, (58)

evaluated at I = 1. Here the appropriate dimensionless variables have been used, and

the axial dependence has been Fourier analyzed. The remaining boundary conditions are

determined from Eqs. (25) - (28), and are given by

(T3+ A [r/2 + --O-- ) b -o r3 12 O +/ = 0, (59)

3ik~b - ikra/2 v, - -r 0 (60)

and

Orb _ 1/2 r = , (61)

when evaluated at f = 1.

A suitable set of initial conditions must also be specified before the perturbation equations

can be solved. In the present analysis, the initial amplitude of the perturbed axial velocit..',

f',, was assumed constant. This gives
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= iC, (62)

where C is real. This specification satisfies the conditions at the axis and, apparently, is

sufficient to determine the initial conditions on most of the remaining variables. Eq. (52)

requires the perturbed radial velocity to be

r = 2, (63)

and Eq. (61) yields

kCb =- (61)

for the perturbed radius. The initial condition for the perturbed magnetic field is different,

depending on the solution specified for B 0. For the initial surface current case, B was

assumed zero, and for the initial body current case, b was assumed to be a linear function

of iF. This gives

3 
(65)

3

for the initial body current case. The first-order pressure satisfies a Poisson-type equation,

which is formulated from the time derivative of the continuity equation. The solution for P
is different depending on the solution chosen for B. For the initial surface current case, P is
given by

3 - 2k 2

p=CjIo(k) -C kf 2' (6(')

where I0 is a modified Bessel function and

C- - A/) b (67)

For the initial body current case, fi is given by

_ A(4 - k2 i2 )C (2k 2 - 3P)C + C2 Io(k) (68)
3k + Ok

where
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C2 2A(2- k2) 2k 2- 3f '-

C2 = [k- lo -] ) (69)
8 3 k Qk 1I(k)'

The constant C is arbitrary Lnd was chosen as C = so that rb = 1 initially. Using these

initial conditions, Eqs. (52) - (55), together with the boundary conditions in Eqs. (58) - (61),

may be solved for the five unknowns in the jet: f ,, v,, P, B, and b.

5. SOLUTION TO PERTURBATION EQUATIONS AND DISCUSSION

Once solutions to the perturbation equations are obtained, they may be used to identif3

disturbances that are unstable. A particular disturbance is considered unstable if it grows ill

an unbounded manner as time progresses. Since it is not practical to monitor the solutions

of every dependent variable when a disturbance is introduced, the growth rate of a single

variable is often used to determine the stability criterion. Fortunately, the selection of this
variable is usually not very critical, because it is often obvious when a particular disturbance

is unstable. In the present analysis, the relative perturbed amplitude, Fb, is monitored to

establish the stability criterion. If [Vbl growF- with time, the disturbance is identified as

unstable.

The numerical integration )f Eqs. (52) - (55) may be accomplished in a straightforwar i

manner using standard finite difference techniques. A radially implicit scheme second ord(r

in i and first order in r was employed. Althiough the application of this scheme proved to

be satisfactory in most respects, calculations of sufficient accuracy were sometimes difficulr

to obtain. Apparently, there were two major causes for this loss in accuracy. First, the nu-

merical evaluation of the infinite series in B0 , as given by Eqs. (41) and (43), often resulteo

in large truncation errors, particularly at early times. Consequently, it was sometimes nec-

essary to approximate b0 by direct numerical integration of Eq. (37). Second, the numerical

evaluation of h was often inaccurate at early times due to the near-discontinuity in its slope
near the boundary. As a result, very small times steps were sometimes required to obtain

accurate solutions.

The result of a calculation for rb, using the initial conditions for the initial surface cui-

rent case, is depicted in Fig. 4. The relative amplitude is shown vs. i, where i = rqt. Th.'

parameters Q? and A were taken to be one, and the magnetic Reynolds number was takent

as ten. Several curves are shown for various values for the wavenumber k. which is related

to the wavelength of the perturbation at any given time by A = -'-.a As is eident from

the figure, disturbances of all wavelengths appear to be unstable. The most unstable dis-
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turbance at early times has an initial wavelength approximately equal to the jet diameter,
corresponding to k = 7r. At later times, the slopes in the curves for the shorter wavelength
disturbances ii, 'rease, indicating an increase in growth rate for these perturbations. Pre-
sumably, this increase would eventually result in larger relative amplitudes for the iritially
shorter wavelength disturbances. These observations are in qualitative agreement with the
instabilities found in perfectly conducting jets (Littlefield and Powell 1990).

10

k = n/4

k =4

?b

0 0.2 0.4 0.6 0.8 1

t
Figure 4. Relative amplitude Fb versus dimensionless time for different values of k with

11= A = 1 and R = 10, assuming an initial surface current.

If the initial current distribution corresponds to a uniform body current, a similar result
is obtained for the relative amplitude. In Fig. 5 the relative amplitude is shown vs. t,
assuming an initial body current, using the same parameters previously specified in Fig. 4.
A comparison of Fig. 4 with Fig. 5 reveals virtually identical behavior in the growth of Fb.

This is a surprising result considering the major differences in current distribution for the
two cases, as indicated in Figs. 2 and 3. Apparently, a change in the current distribution
has only a minor effect on the growth rate of the relative amplitude.

To assess the overall effect of electrical conductivity on the growth rate of perturbations,
the relative amplitude fb is plotted in Fig. 6 vs. 1 for three different magnetic Reynolds
numbers. The parameters 11 and A were taken as one, and the wavenumber k was taken as
7r, which corresponds to the most unstable wavelength in all cases. Evidently, the largest,
growth rate in b is observed when the electrical conductivity is very large, corresponding to
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k = 7T/4

k = 7r/ 2
k=2r
k = 2tr
k = 4rr

rb

0 0.2 0.4 0.6 0.8 1

Figure 5. Relative amplitude rb versus dimensionless time for different values of k with
11 = A = 1 and R = 10, assuming an initial body current.

R -+ oo. The smallest growth rate in relative amplitude occurs in the absence of electrical

current, or when R = 0. When R = 10, the range in rb falls between these two extremes,

but is reasonably close to the values for R --+ oo. An increase in the electrical conductivit),

apparently, results in only small increases in the relative amplitude.

The physical mechanisms responsible for the hydrodynamic and MHD instabilities found

in jets have been discussed in detail elsewhere (Powell and Littlefield 1990; Littlefield and

Powell 1990) for jets of infinite conductivity. Evidently, the same physical mechanisms are

also applicable to jets of finite conductivity, and result in the same qualitative conclusions

about the stability. In particular, the application of electrical current to a perturbed jet

results in variations in the magnetic field and current density, which both increase in regions

where localized necking occurs. The current and magnetic field interact to crcate Lorentz

forces that always decrease the stability of the jet. The exact location and magnitude of the, e

Lorentz forces depends on many factors, including the assumption for electrical conductivity.

If infinite conductivity is assumed, for example, the Lorentz forces are concentrated at the

surface of the jet. For jets of finite conductivity, however, the Lorentz forces are distributed

throughout the cross section.

Disturbances in the current clearly result in decreases of the stability of jets. A qualita

tive discussion of the Lorentz forces, however, does not sufficiently explain the differences in
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Figure 6. Comparison of relative amplitudes at different times when R 0 0, R = 10 and

R-0, with =A= land k=r.

relative amplitude depicted in Fig. 6. It is necessary to understand the effect of current dis-

tribution on the magnitude of the Lorentz forces. A convenient method for making objective

comparisons is to consider the net axial Lorentz force per unit length on a differential disk

of width dz in the jet. It is this force that causes the disk to be accelerated out of the neck.

A simple computation reveals this force is initially given by

F- ik 2C I2 exp(ik) (70)241ra

if the current is concentrated at the surface. For a uniform body current, the axial force per

unit volume is initially given by

f = ik2CO12 r2 exp(iki) (71)
f- 127r2as

which, when integrated over the area of the disk, gives the result in Eq. (70). At later times,

initial surface currents remain on the surface for a -+ oo, and uniform body currents remain

relatively uniform for finite conductivity. As a consequence, the axial Lorentz forces, as well

as the relative amplitude, should remain approximately equal at later times for the different

current distributions. The infinite conductivity case, apparently, results in only slightlv

higher growth rates for 4b, because the Lorentz forces are concentrated on the surface of
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the jet. This concentration of forces slightly increases the velocities at the surface, which

increases the relative amplitude.

The effect of current distribution on the Lorentz forces in the jet becomes readily apparent

upon examination of the velocity disturbances. In Fig. 7, the perturbation streamlines are

shown for a waxelength segment of the jet at time 1 = 0.5, where fl = A = 1, R = 10,
and k = 37r/2. The left portion of the figure shows the streamlines for an initial surface

current, whereas the right portion corresponds to an initial body current. In both figures,
a stabilizing secondary motion is observed in the central portion of the jet. This secondary

motion is apparently caused by restoring plastic forces in the jet (Littlefield and Powell 1990)
and is present even in the absence of electromagnetic effects. The initial body current case,

however, displays an additional cell near the centerline of the jet. Evidently, the presence of

this cell is caused by electromagnetic body forces that act near the centerline when current

is distributed uniformly throughout the jet. Even though the perturbation in the boundary
appears to be equal in both cases, the disturbance velocity distributions are quite different.

Figure 7. Perturbation velocity streamlines for a wavelength segment of the jet at i=0.5
with k = 3"r/2, f = A = 1 and ? = 10 for (a) an initial surface current and (b)

an initial body current.
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6. CONCLUSIONS

The overall effect of finite electrical conductivity on the stability of uniformly elongating
plastic jets appears to be mostly quantitative. The largest growth rates in the boundary
perturbation are observed for jets of infinite conductivity; the magnitude in rb for jets of
finite conductivity differs only slightly from these results. These similarities, however, are not
totally unexpected. The electrical current was assumed equal in every case and, consequently
the average magnetic pressure in the jet is about the same for all conductivities. The local
value for the pressure, however, is variable and depends on the current distribution in the
jet, as well as the conductivity. Apparently, the small differences in rb result from small local
variations in the magnetic pressure. This pressure becomes concentrated at the surface for
large conductivities which, evidently, results in slightly larger growth rates for rb.

Application of the analysis to shaped-charge jets indicates that electrical currents signif-
icantly increase the instabilities in the jets and may reduce the breakup time. Calculations
for realistic levels of electrical conductivity do not appreciably alter this result. The increase
in instability is present even for sufficiently low current levels, where large scale changes in

the density and temperature of the jet are not expected.
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